Compilação sobre possíveis biomarcadores para doença de Alzheimer

Conteúdo do artigo principal

Mateus Ribeiro
Paulo Roberto Palma Urbano

Resumo

Conforme a “Organização Mundial da Saúde” (2017), há 50 milhões de pessoas com demência no mundo. A Doença de Alzheimer (DA) acomete 36 milhões de pessoas mundialmente e cerca de 1,2 milhão no Brasil. As demências tiveram o custo global de 1 trilhão de dólares no ano de 2019, tal custo é previsto que dobre até 2030. A DA é característica pelo depósito de placas senis de origem da proteína amiloide e emaranhados neurofibrilares, da proteína Tau hiperfosforilada. Atualmente o diagnóstico é feito após algumas percepções na mudança de comportamento do paciente por pessoas próximas, como por exemplo declínios na memória, confusão com espaço e tempo, mudanças de personalidade, entre outros, e então é feito o diagnóstico através de avaliações física, clínicas, laboratoriais e através de alguns questionários. Nesta revisão, abordaremos alguns possíveis biomarcadores sanguíneos bastante estudados ao redor do mundo como por exemplo: PCR, IL-6 e TNF-a, e outros menos estudados: TRPC6, BIN1, MCP-1; uma vez que a utilização de biomarcadores no sangue concede maior conforto ao paciente e gera menor custo.

Detalhes do artigo

Como Citar
Ribeiro, M., & Palma Urbano, P. R. (2020). Compilação sobre possíveis biomarcadores para doença de Alzheimer. Revista Brasileira De Ciências Biomédicas, 1(2), 78–85. https://doi.org/10.46675/rbcbm.v1i2.13
Seção
Artigo de revisão

Referências

World Health Organization. Dementia: Key facts. 2019. Disponível em: https://www.who.int/en/news-room/fact-sheets/detail/dementia. Acesso em: 10 abr. 2019.

TOSI, Giovanni; PEDERZOLI, Francesca; BELLETTI, Daniela; VANDELLI, Maria Angela; FORNI, Flavio; DUSKEY, Jason Thomas; RUOZI, Barbara. Nanomedicine in Alzheimer's disease: amyloid beta targeting strategy. : Amyloid beta targeting strategy. Nanoneuroprotection And Nanoneurotoxicology, [s.l.], p. 57-88, 2019. Elsevier. http://dx.doi.org/10.1016/bs.pbr.2019.03.001. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30961872. Acesso em: 22 out. 2019.

Associação Brasileira de Alzheimer. O que é Alzheimer. 2019. Disponível em: http://abraz.org.br/web/sobre-alzheimer/o-que-e-alzheimer/. Acesso em: 7 abr. 2019.

GALLUCCI NETO, José; TAMELINI, Melissa Garcia; FORLENZA, Orestes Vicente. Diagnóstico diferencial das demências. Archives Of Clinical Psychiatry (são Paulo), São Paulo, v. 32, n. 3, p. 119-130, jun. 2005. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0101-60832005000300004. Disponível em: https://www.scielo.br/scielo.php?pid=S0101-60832005000300004&script=sci_abstract&tlng=pt. Acesso em: 10 set. 2019.

The Alzheimer's Association. 2018 Alzheimer's disease facts and figures. Alzheimer's & Dementia, [s.l.], v. 14, n. 3, p. 367-429, mar. 2018. Wiley. http://dx.doi.org/10.1016/j.jalz.2018.02.001. Disponível em: https://alz-journals.onlinelibrary.wiley.com/doi/abs/10.1016/j.jalz.2018.02.001. Acesso em: 5 out. 2019.

CARAMELLI, Paulo; BARBOSA, Maira Tonidandel. Como diagnosticar as quatro causas mais freqüentes de demência? Revista Brasileira de Psiquiatria, [s.l.], v. 24, n. 1, p. 7-10, abr. 2002. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1516-44462002000500003. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462002000500003. Acesso em: 20 abr. 2019.

The Alzheimer's Association. Medical Tests. 2018. Disponível em: https://www.alz.org/alzheimers-dementia/diagnosis/medical_tests. Acesso em: 9 abr. 2019.

GRIESI-OLIVEIRA, Karina; SUZUKI, Angela May; MUOTRI, Alysson Renato. TRPC Channels and Mental Disorders. Advances In Experimental Medicine And Biology, [s.l.], p. 137-148, 2017. Springer Netherlands. http://dx.doi.org/10.1007/978-94-024-1088-4_12. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/28508319. Acesso em: 15 abr. 2019

TAI, Yilin; FENG, Shengjie; DU, Wanlu; WANG, Yizheng. Functional roles of TRPC channels in the developing brain. Pflügers Archiv - European Journal Of Physiology, [s.l.], v. 458, n. 2, p. 283-289, 21 nov. 2008. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s00424-008-0618-y. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19023589. Acesso em: 21 abr. 2019.

DIETRICH, Alexander; GUDERMANN, Thomas. TRPC6: physiological function and pathophysiological relevance.: Physiological Function and Pathophysiological Relevance. Handbook of Experimental Pharmacology, [s.l.], p. 157-188, 2014. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-54215-2_7. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/24756706. Acesso em: 22 abr. 2019.

LEE, Wei-ju; LIAO, Yi-chu; WANG, Yen-feng; LIN, I-feng; WANG, Shuu-jiun; FUH, Jong-ling. Plasma MCP-1 and Cognitive Decline in Patients with Alzheimer’s Disease and Mild Cognitive Impairment: a two-year follow-up study. : A Two-year Follow-up Study. Scientific Reports, [s.l.], v. 8, n. 1, 1280, 19 jan. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41598-018-19807-y. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/29352259. Acesso em: 20 out. 2019.

SANTOS, Lígia Ramos dos; BELCAVELLO, Luciano; CAMPOREZ, Daniela; MAGALHÃES, Caerê Iamonde Maciel de; ZANDONADE, Eliana; MORELATO, Renato Lírio; ERRERA, Flavia Imbroisi Valle; LOURO, Iuri Drumond; BATITUCCI, Marial do Carmo Pimentel; PAULA, Flavia de. Association study of the BIN1 and IL-6 genes on Alzheimer’s disease. Neuroscience Letters, [s.l.], v. 614, p. 65-69, fev. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.neulet.2015.12.046. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/26733302. Acesso em: 22 out. 2019.

CLYNE, Brian; OLSHAKER, Jonathan S. The C-reactive protein. The Journal Of Emergency Medicine, [s.l.], v. 17, n. 6, p. 1019-1025, nov. 1999. Elsevier BV. http://dx.doi.org/10.1016/s0736-4679(99)00135-3. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/10595891. Acesso em: 22 set. 2019.

GONG, Changguo; WEI, Daixin; WANG, Ying; MA, Ji; YUAN, Chonggang; ZHANG, Wei; YU, Guohua; ZHAO, Yulan. A Meta-Analysis of C-Reactive Protein in Patients With Alzheimer’s Disease. American Journal Of Alzheimer's Disease & Other Dementiasr, [s.l.], v. 31, n. 3, p. 194-200, 3 set. 2015. SAGE Publications. http://dx.doi.org/10.1177/1533317515602087. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/26340961. Acesso em: 20 out. 2019.

HAGE, F G. C-reactive protein and Hypertension. Journal Of Human Hypertension, [s.l.], v. 28, n. 7, p. 410-415, 14 nov. 2013. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/jhh.2013.111. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/24226100. Acesso em: 14 out. 2019.

HSUCHOU, Hung; KASTIN, Abba J.; MISHRA, Pramod K.; PAN, Weihong. C-Reactive Protein Increases BBB Permeability: implications for obesity and neuroinflammation. : Implications for Obesity and Neuroinflammation. Cellular Physiology And Biochemistry, [s.l.], v. 30, n. 5, p. 1109-1119, 2012. S. Karger AG. http://dx.doi.org/10.1159/000343302. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23018453. Acesso em: 15 out. 2019.

KUHLMANN, Christoph R.w.; LIBRIZZI, Laura; CLOSHEN, Dorothea; PFLANZNER, Thorsten; LESSMANN, Volkmar; PIETRZIK, Claus U.; CURTIS, Marco de; LUHMANN, Heiko J.. Mechanisms of C-Reactive Protein-Induced Blood–Brain Barrier Disruption. Stroke, [s.l.], v. 40, n. 4, p. 1458-1466, abr. 2009. Ovid Technologies (Wolters Kluwer Health). http://dx.doi.org/10.1161/strokeaha.108.535930. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19246692. Acesso em: 20 out. 2019.

JAEGER, Laura B.; DOHGU, Shinya; SULTANA, Rukhsana; LYNCH, Jessica L.; OWEN, Joshua B.; ERICKSON, Michelle A.; SHAH, Gul N.; PRICE, Tulin O.; FLEEGAL-DEMOTTA, Melissa A.; BUTTERFILED, D. Allan. Lipopolysaccharide alters the blood–brain barrier transport of amyloid β protein: a mechanism for inflammation in the progression of alzheimer’s disease: A mechanism for inflammation in the progression of Alzheimer’s disease. Brain, Behavior, And Immunity, [s.l.], v. 23, n. 4, p. 507-517, maio 2009. Elsevier BV. http://dx.doi.org/10.1016/j.bbi.2009.01.017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783557/. Acesso em: 16 out. 2019.

KISHIMOTO, T.. IL-6: from its discovery to clinical applications. : from its discovery to clinical applications. International Immunology, [s.l.], v. 22, n. 5, p. 347-352, 21 abr. 2010. Oxford University Press (OUP). http://dx.doi.org/10.1093/intimm/dxq030. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/20410258. Acesso em: 15 out. 2019.

MIHARA, Masahiko; HASHIZUME, Misato; YOSHIDA, Hiroto; SUZUKI, Miho; SHIINA, Masashi. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clinical Science, [s.l.], v. 122, n. 4, p. 143-159, 14 out. 2011. Portland Press Ltd.. http://dx.doi.org/10.1042/cs20110340. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/22029668. Acesso em: 11 set. 2019.

SPOOREN, Anneleen; KOLMUS, Krzysztof; LAUREYS, Guy; CLINCKERS, Ralph; KEYSER, Jacques de; HAEGEMAN, Guy; GERLO, Sarah. Interleukin-6, a mental cytokine. Brain Research Reviews, [s.l.], v. 67, n. 1-2, p. 157-183, jun. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.brainresrev.2011.01.002. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/21238488. Acesso em: 22 set. 2019.

HULL, M.; STRAUSS, S.; BERGER, M.; VOLK, B.; BAUER, J.. The participation of interleukin-6, a stress-inducible cytokine, in the pathogenesis of Alzheimer's disease. Behavioural Brain Research, [s.l.], v. 78, n. 1, p. 37-41, jun. 1996. Elsevier BV. http://dx.doi.org/10.1016/0166-4328(95)00213-8. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/8793035. Acesso em: 14 out. 2019.

VUKIC, Vanja; CALLAGHAN, Debbie; WALKER, Douglas; LUE, Lih-fen; LIU, Qing Yan; COURAUD, Pierre-oliver; ROMERO, Ignacio A.; WEKSLER, Babette; STANIMIROVIC, Danica B.; ZHANG, Wandong. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer's brain is mediated by the JNK-AP1 signaling pathway. Neurobiology Of Disease, [s.l.], v. 34, n. 1, p. 95-106, abr. 2009. Elsevier BV. http://dx.doi.org/10.1016/j.nbd.2008.12.007. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19162185. Acesso em: 10 out. 2019.

RINGHEIM, Garth e; SZCZEPANIK, Ann Marie; PETKO, Wayne; BURGHER, Kendra L; ZHU, Sheng Zu; CHAO, Chun C. Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex. Molecular Brain Research, [s.l.], v. 55, n. 1, p. 35-44, mar. 1998. Elsevier BV. http://dx.doi.org/10.1016/s0169-328x(97)00356-2. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/9645958. Acesso em: 15 out. 2019.

CAWTHORN, William P.; SETHI, Jaswinder K.. TNF-α and adipocyte biology. Febs Letters, [s.l.], v. 582, n. 1, p. 117-131, 26 nov. 2007. Wiley. http://dx.doi.org/10.1016/j.febslet.2007.11.051. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/18037376. Acesso em: 20 out. 2019.

CIEBIERA, Michał; WłODARCZYK, Marta; ZGLICZYńSKA, Magdalena; ŁUKASZUK, Krzysztof; MęCZEKALSKI, Błażej; KOBIERZYCKI, Christopher; ŁOZIńSKI, Tomasz; JAKIEL, Grzegorz. The Role of Tumor Necrosis Factor α in the Biology of Uterine Fibroids and the Related Symptoms. International Journal Of Molecular Sciences, [s.l.], v. 19, n. 12, p. 3869, 4 dez. 2018. MDPI AG. http://dx.doi.org/10.3390/ijms19123869. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321234/. Acesso em: 11 set. 2019.

USLU, Sema; AKARKARASU, Zubeyde Eken; OZBABALIK, Demet; OZKAN, Serhat; ÇOLAK, Omer; DEMIRKAN, Emine Sutken; OZKIRIS, Ayşe; DEMIRUSTU, Canan; ALATAS, Ozkan. Levels of Amyloid Beta-42, Interleukin-6 and Tumor Necrosis Factor-Alpha in Alzheimer’s Disease and Vascular Dementia. Neurochemical Research, [s.l.], v. 37, n. 7, p. 1554-1559, 22 mar. 2012. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11064-012-0750-0. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/22437436. Acesso em: 11 out. 2019.

Alzheimer Disease International. World Alzheimer Report 2015: The Global Impact of Dementia. 2015. Disponível em: https://www.alz.co.uk/research/world-report-2015. Acesso em 15 abr. 2019.

World Health Organization. Mental health: Infographic on dementia. 2017. Disponível em: https://www.who.int/mental_health/neurology/dementia/infographic_dementia/en/. Acesso em: 12 abr. 2019

Alzheimer Disease International. World Alzheimer Report 2019: Attitudes to dementia. Disponível em: https://www.alz.co.uk/research/WorldAlzheimerReport2019.pdf. Acesso em: 12 novembro 2019.

HRUBEŁOVÁ, Kateřina; FOUSKOVÁ, Markéta; HABARTOVÁ, Lucie; FIŁAR, Zdeněk; JIRÁK, Roman; RABOCH, Jiří; SETNIčKA, Vladimír. Search for biomarkers of Alzheimer‘s disease: recent insights, current challenges and future prospects. : Recent insights, current challenges and future prospects. Clinical Biochemistry, [s.l.], v. 72, p. 39-51, out. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.clinbiochem.2019.04.002. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30953619. Acesso em: 05 set. 2019.

DRYER, Stuart E.; ROSHANRAVAN, Hila; KIM, Eun Young. TRPC channels: regulation, dysregulation and contributions to chronic kidney disease. : Regulation, dysregulation and contributions to chronic kidney disease. Biochimica Et Biophysica Acta (BBA) - Molecular Basis Of Disease, [s.l.], v. 1865, n. 6, p. 1041-1066, jun. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.bbadis.2019.04.001. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30953689. Acesso em: 15 abr. 2019.

WANG, Junfeng; LU, Rui; YANG, Jian; LI, Hongyu; HE, Zhuohao; JING, Naihe; WANG, Xiaomin; WANG, Yizheng. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nature Communications, [s.l.], v. 6, n. 1, 8876, 19 nov. 2015. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/ncomms9876. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/26581893. Acesso em: 15 abr. 2019.

LU, Rui; HE, Qian; WANG, Junfeng. TRPC Channels and Alzheimer’s Disease. Advances In Experimental Medicine And Biology, [s.l.], p. 73-83, 2017a. Springer Netherlands. http://dx.doi.org/10.1007/978-94-024-1088-4_7. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/28508314. Acesso em: 02 maio 2020.

LU, R; WANG, J; TAO, R; WANG, J; ZHU, T; GUO, W; SUN, y; LI, H; GAO, y; ZHANG, W. Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer’s disease and mild cognitive impairment. Molecular Psychiatry, [s.l.], v. 23, n. 3, p. 767-776, 11 jul. 2017b. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/mp.2017.136. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/28696436. Acesso em: 10 abr. 2019.

CHEN, Jin-mei; LI, Qing-wei; LIU, Jian-sheng; JIANG, Guo-xin; LIU, Jian-ren; CHEN, Sheng-di; CHENG, Qi. TRPC6 mRNA levels in peripheral leucocytes of patients with Alzheimer's disease and mild cognitive impairment: a case-control study. : A case-control study. Progress In Neuro-psychopharmacology And Biological Psychiatry, [s.l.], v. 92, p. 279-284, jun. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.pnpbp.2019.01.009. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30684527. Acesso em: 1 abr. 2019.

O'BRYANT, Sid E.; WARING, Stephen C.; HOBSON, Valerie; HALL, James R.; MOORE, Carol B.; BOTTIGLIERI, Teodoro; MASSMAN, Paul; DIAZ-ARRASTIA, Ramon. Decreased C-Reactive Protein Levels in Alzheimer Disease. Journal Of Geriatric Psychiatry And Neurology, [s.l.], v. 23, n. 1, p. 49-53, 20 nov. 2009. SAGE Publications. http://dx.doi.org/10.1177/0891988709351832. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204581/. Acesso em: 02 maio 2020.

YARCHOAN, Mark; LOUNEVA, Natalia; XIE, Sharon X.; SWENSON, Frank J.; HU, William; SOARES, Holly; TROJANOWSKI, John Q.; LEE, Virginia M.-y.; KLING, Mitchel A.; SHAW, Leslie M.. Association of plasma C-reactive protein levels with the diagnosis of Alzheimer's disease. Journal Of The Neurological Sciences, [s.l.], v. 333, n. 1-2, p. 9-12, out. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.jns.2013.05.028. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23978419. Acesso em: 11 fev. 2020.

KIM, Yo Sup; LEE, Kang Joon; KIM, Hyun. Serum tumour necrosis factor-α and interleukin-6 levels in Alzheimer's disease and mild cognitive impairment. Psychogeriatrics, [s.l.], v. 17, n. 4, p. 224-230, 28 jan. 2017. Wiley. http://dx.doi.org/10.1111/psyg.12218. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/28130814. Acesso em: 10 fev. 2020.

BERMEJO, Paloma; MARTÍN-ARAGÓN, Sagrario; BENEDÍ, Juana; SUSÍN, Cristina; FELICI, Emanuela; GIL, Pedro; RIBERA, José Manuel; VILLAR, Ángel Mª. Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer's disease. Immunology Letters, [s.l.], v. 117, n. 2, p. 198-202, maio 2008. Elsevier BV. http://dx.doi.org/10.1016/j.imlet.2008.02.002. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/18367253. Acesso em: 13 fev. 2020.

VAN DUIJN, Cornelia M; HOFMAN, Albert; NAGELKERKEN, Lex. Serum levels of interleukin-6 are not elevated in patients with Alzheimer's disease. Neuroscience Letters, [s.l.], v. 108, n. 3, p. 350-354, jan. 1990. Elsevier BV. http://dx.doi.org/10.1016/0304-3940(90)90666-w. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/2304653. Acesso em: 10 fev. 2020.

ANGELIS, Pela; SCHARF, Simon; MANDER, Alastair; VAJDA, Frank; CHRISTOPHIDIS, Nicholas. Serum interleukin-6 and interleukin-6 soluble receptor in Alzheimer's disease. Neuroscience Letters, [s.l.], v. 244, n. 2, p. 106-108, mar. 1998. Elsevier BV. http://dx.doi.org/10.1016/s0304-3940(98)00136-0. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/9572596. Acesso em: 10 fev. 2020.

CHAPUIS, J; HANSMANNEL, F; GISTELINCK, M; A MOUNIER,; VAN CAUWENBERGHE, C; KOLEN, K V; GELLER, F; SOTTEJEAU, y; HAROLD, D. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Molecular Psychiatry, [s.l.], v. 18, n. 11, p. 1225-1234, 12 fev. 2013. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/mp.2013.1. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23399914. Acesso em: 15 set. 2019.

SUN, Lei; TAN, Meng-shan; HU, Nan; YU, Jin-tai; TAN, Lan. Exploring the Value of Plasma BIN1 as a Potential Biomarker for Alzheimer's Disease. Journal Of Alzheimer's Disease, [s.l.], v. 37, n. 2, p. 291-295, 9 set. 2013. IOS Press. http://dx.doi.org/10.3233/jad-130392. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23803295. Acesso em: 21 set. 2019.

SHI, Jian-quan; SHEN, Wei; CHEN, Jun; WANG, Bian-rong; ZHONG, Ling-ling; ZHU, Yin-wei; ZHU, Hai-qing; ZHANG, Qiao-quan; ZHANG, Ying-dong; XU, Jun. Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Research, [s.l.], v. 1368, p. 239-247, jan. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.brainres.2010.10.053. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/20971085. Acesso em: 10 out. 2019.

ÁLVAREZ, Antón; CACABELOS, Ramón; SANPEDRO, Carolina; GARCÍA-FANTINI, Manuel; ALEIXANDRE, Manuel. Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiology Of Aging, [s.l.], v. 28, n. 4, p. 533-536, abr. 2007. Elsevier BV. http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.012. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/16569464. Acesso em: 10 set. 2019.

NG, Ada; TAM, Wilson W.; ZHANG, Melvyn W.; HO, Cyrus S.; HUSAIN, Syeda F.; MCINTYRE, Roger S.; HO, Roger C.. IL-1β, IL-6, TNF- α and CRP in Elderly Patients with Depression or Alzheimer’s disease: systematic review and meta-analysis. : Systematic Review and Meta-Analysis. Scientific Reports, [s.l.], v. 8, n. 1, 12050, 13 ago. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41598-018-30487-6. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30104698. Acesso em: 15 out. 2019.