Compilação sobre possíveis biomarcadores para doença de Alzheimer

Main Article Content

Mateus Ribeiro
Paulo Roberto Palma Urbano

Abstract

According to “World Health Organization” (2017), there are 50 million people with dementia in the world. The Alzheimer’s Disease (AD) affects 36 million people globally and about 1,2 million Brazilians. The dementias had an overall cost of 1 trillion dollars in 2019, and it’s estimated to cost 2 trillion dollars by 2030. The AD is characteristic by the deposit of amyloid plaque originated by amyloid proteins and neurofibrillary tangles originated by hiperfosforilated Tau protein. Currently the diagnosis is made through perceptions of patient’s behavior change by close people, such as decline in memory, confusion with space and time, personality change, among others, and then the diagnostic is made by physical, clinical, laboratory exams and some questionnaires. In this review, we will approach some possible blood biomarkers already studied around the world as such: PCR, IL-6 and TNF-a, and as well some less studied as such: TRPC6, BIN1, MCP-1; since the use of biomarkers in the blood provides greater comfort to the patient and the cost is lower.

Article Details

How to Cite
Ribeiro, M., & Palma Urbano, P. R. (2020). Compilação sobre possíveis biomarcadores para doença de Alzheimer. Brazilian Journal of Biomedical Sciences, 1(2), 78–85. https://doi.org/10.46675/rbcbm.v1i2.13
Section
Review article

References

World Health Organization. Dementia: Key facts. 2019. Disponível em: https://www.who.int/en/news-room/fact-sheets/detail/dementia. Acesso em: 10 abr. 2019.

TOSI, Giovanni; PEDERZOLI, Francesca; BELLETTI, Daniela; VANDELLI, Maria Angela; FORNI, Flavio; DUSKEY, Jason Thomas; RUOZI, Barbara. Nanomedicine in Alzheimer's disease: amyloid beta targeting strategy. : Amyloid beta targeting strategy. Nanoneuroprotection And Nanoneurotoxicology, [s.l.], p. 57-88, 2019. Elsevier. http://dx.doi.org/10.1016/bs.pbr.2019.03.001. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30961872. Acesso em: 22 out. 2019.

Associação Brasileira de Alzheimer. O que é Alzheimer. 2019. Disponível em: http://abraz.org.br/web/sobre-alzheimer/o-que-e-alzheimer/. Acesso em: 7 abr. 2019.

GALLUCCI NETO, José; TAMELINI, Melissa Garcia; FORLENZA, Orestes Vicente. Diagnóstico diferencial das demências. Archives Of Clinical Psychiatry (são Paulo), São Paulo, v. 32, n. 3, p. 119-130, jun. 2005. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0101-60832005000300004. Disponível em: https://www.scielo.br/scielo.php?pid=S0101-60832005000300004&script=sci_abstract&tlng=pt. Acesso em: 10 set. 2019.

The Alzheimer's Association. 2018 Alzheimer's disease facts and figures. Alzheimer's & Dementia, [s.l.], v. 14, n. 3, p. 367-429, mar. 2018. Wiley. http://dx.doi.org/10.1016/j.jalz.2018.02.001. Disponível em: https://alz-journals.onlinelibrary.wiley.com/doi/abs/10.1016/j.jalz.2018.02.001. Acesso em: 5 out. 2019.

CARAMELLI, Paulo; BARBOSA, Maira Tonidandel. Como diagnosticar as quatro causas mais freqüentes de demência? Revista Brasileira de Psiquiatria, [s.l.], v. 24, n. 1, p. 7-10, abr. 2002. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1516-44462002000500003. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462002000500003. Acesso em: 20 abr. 2019.

The Alzheimer's Association. Medical Tests. 2018. Disponível em: https://www.alz.org/alzheimers-dementia/diagnosis/medical_tests. Acesso em: 9 abr. 2019.

GRIESI-OLIVEIRA, Karina; SUZUKI, Angela May; MUOTRI, Alysson Renato. TRPC Channels and Mental Disorders. Advances In Experimental Medicine And Biology, [s.l.], p. 137-148, 2017. Springer Netherlands. http://dx.doi.org/10.1007/978-94-024-1088-4_12. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/28508319. Acesso em: 15 abr. 2019

TAI, Yilin; FENG, Shengjie; DU, Wanlu; WANG, Yizheng. Functional roles of TRPC channels in the developing brain. Pflügers Archiv - European Journal Of Physiology, [s.l.], v. 458, n. 2, p. 283-289, 21 nov. 2008. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s00424-008-0618-y. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19023589. Acesso em: 21 abr. 2019.

DIETRICH, Alexander; GUDERMANN, Thomas. TRPC6: physiological function and pathophysiological relevance.: Physiological Function and Pathophysiological Relevance. Handbook of Experimental Pharmacology, [s.l.], p. 157-188, 2014. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-54215-2_7. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/24756706. Acesso em: 22 abr. 2019.

LEE, Wei-ju; LIAO, Yi-chu; WANG, Yen-feng; LIN, I-feng; WANG, Shuu-jiun; FUH, Jong-ling. Plasma MCP-1 and Cognitive Decline in Patients with Alzheimer’s Disease and Mild Cognitive Impairment: a two-year follow-up study. : A Two-year Follow-up Study. Scientific Reports, [s.l.], v. 8, n. 1, 1280, 19 jan. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41598-018-19807-y. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/29352259. Acesso em: 20 out. 2019.

SANTOS, Lígia Ramos dos; BELCAVELLO, Luciano; CAMPOREZ, Daniela; MAGALHÃES, Caerê Iamonde Maciel de; ZANDONADE, Eliana; MORELATO, Renato Lírio; ERRERA, Flavia Imbroisi Valle; LOURO, Iuri Drumond; BATITUCCI, Marial do Carmo Pimentel; PAULA, Flavia de. Association study of the BIN1 and IL-6 genes on Alzheimer’s disease. Neuroscience Letters, [s.l.], v. 614, p. 65-69, fev. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.neulet.2015.12.046. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/26733302. Acesso em: 22 out. 2019.

CLYNE, Brian; OLSHAKER, Jonathan S. The C-reactive protein. The Journal Of Emergency Medicine, [s.l.], v. 17, n. 6, p. 1019-1025, nov. 1999. Elsevier BV. http://dx.doi.org/10.1016/s0736-4679(99)00135-3. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/10595891. Acesso em: 22 set. 2019.

GONG, Changguo; WEI, Daixin; WANG, Ying; MA, Ji; YUAN, Chonggang; ZHANG, Wei; YU, Guohua; ZHAO, Yulan. A Meta-Analysis of C-Reactive Protein in Patients With Alzheimer’s Disease. American Journal Of Alzheimer's Disease & Other Dementiasr, [s.l.], v. 31, n. 3, p. 194-200, 3 set. 2015. SAGE Publications. http://dx.doi.org/10.1177/1533317515602087. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/26340961. Acesso em: 20 out. 2019.

HAGE, F G. C-reactive protein and Hypertension. Journal Of Human Hypertension, [s.l.], v. 28, n. 7, p. 410-415, 14 nov. 2013. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/jhh.2013.111. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/24226100. Acesso em: 14 out. 2019.

HSUCHOU, Hung; KASTIN, Abba J.; MISHRA, Pramod K.; PAN, Weihong. C-Reactive Protein Increases BBB Permeability: implications for obesity and neuroinflammation. : Implications for Obesity and Neuroinflammation. Cellular Physiology And Biochemistry, [s.l.], v. 30, n. 5, p. 1109-1119, 2012. S. Karger AG. http://dx.doi.org/10.1159/000343302. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23018453. Acesso em: 15 out. 2019.

KUHLMANN, Christoph R.w.; LIBRIZZI, Laura; CLOSHEN, Dorothea; PFLANZNER, Thorsten; LESSMANN, Volkmar; PIETRZIK, Claus U.; CURTIS, Marco de; LUHMANN, Heiko J.. Mechanisms of C-Reactive Protein-Induced Blood–Brain Barrier Disruption. Stroke, [s.l.], v. 40, n. 4, p. 1458-1466, abr. 2009. Ovid Technologies (Wolters Kluwer Health). http://dx.doi.org/10.1161/strokeaha.108.535930. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19246692. Acesso em: 20 out. 2019.

JAEGER, Laura B.; DOHGU, Shinya; SULTANA, Rukhsana; LYNCH, Jessica L.; OWEN, Joshua B.; ERICKSON, Michelle A.; SHAH, Gul N.; PRICE, Tulin O.; FLEEGAL-DEMOTTA, Melissa A.; BUTTERFILED, D. Allan. Lipopolysaccharide alters the blood–brain barrier transport of amyloid β protein: a mechanism for inflammation in the progression of alzheimer’s disease: A mechanism for inflammation in the progression of Alzheimer’s disease. Brain, Behavior, And Immunity, [s.l.], v. 23, n. 4, p. 507-517, maio 2009. Elsevier BV. http://dx.doi.org/10.1016/j.bbi.2009.01.017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783557/. Acesso em: 16 out. 2019.

KISHIMOTO, T.. IL-6: from its discovery to clinical applications. : from its discovery to clinical applications. International Immunology, [s.l.], v. 22, n. 5, p. 347-352, 21 abr. 2010. Oxford University Press (OUP). http://dx.doi.org/10.1093/intimm/dxq030. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/20410258. Acesso em: 15 out. 2019.

MIHARA, Masahiko; HASHIZUME, Misato; YOSHIDA, Hiroto; SUZUKI, Miho; SHIINA, Masashi. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clinical Science, [s.l.], v. 122, n. 4, p. 143-159, 14 out. 2011. Portland Press Ltd.. http://dx.doi.org/10.1042/cs20110340. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/22029668. Acesso em: 11 set. 2019.

SPOOREN, Anneleen; KOLMUS, Krzysztof; LAUREYS, Guy; CLINCKERS, Ralph; KEYSER, Jacques de; HAEGEMAN, Guy; GERLO, Sarah. Interleukin-6, a mental cytokine. Brain Research Reviews, [s.l.], v. 67, n. 1-2, p. 157-183, jun. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.brainresrev.2011.01.002. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/21238488. Acesso em: 22 set. 2019.

HULL, M.; STRAUSS, S.; BERGER, M.; VOLK, B.; BAUER, J.. The participation of interleukin-6, a stress-inducible cytokine, in the pathogenesis of Alzheimer's disease. Behavioural Brain Research, [s.l.], v. 78, n. 1, p. 37-41, jun. 1996. Elsevier BV. http://dx.doi.org/10.1016/0166-4328(95)00213-8. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/8793035. Acesso em: 14 out. 2019.

VUKIC, Vanja; CALLAGHAN, Debbie; WALKER, Douglas; LUE, Lih-fen; LIU, Qing Yan; COURAUD, Pierre-oliver; ROMERO, Ignacio A.; WEKSLER, Babette; STANIMIROVIC, Danica B.; ZHANG, Wandong. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer's brain is mediated by the JNK-AP1 signaling pathway. Neurobiology Of Disease, [s.l.], v. 34, n. 1, p. 95-106, abr. 2009. Elsevier BV. http://dx.doi.org/10.1016/j.nbd.2008.12.007. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19162185. Acesso em: 10 out. 2019.

RINGHEIM, Garth e; SZCZEPANIK, Ann Marie; PETKO, Wayne; BURGHER, Kendra L; ZHU, Sheng Zu; CHAO, Chun C. Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex. Molecular Brain Research, [s.l.], v. 55, n. 1, p. 35-44, mar. 1998. Elsevier BV. http://dx.doi.org/10.1016/s0169-328x(97)00356-2. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/9645958. Acesso em: 15 out. 2019.

CAWTHORN, William P.; SETHI, Jaswinder K.. TNF-α and adipocyte biology. Febs Letters, [s.l.], v. 582, n. 1, p. 117-131, 26 nov. 2007. Wiley. http://dx.doi.org/10.1016/j.febslet.2007.11.051. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/18037376. Acesso em: 20 out. 2019.

CIEBIERA, Michał; WłODARCZYK, Marta; ZGLICZYńSKA, Magdalena; ŁUKASZUK, Krzysztof; MęCZEKALSKI, Błażej; KOBIERZYCKI, Christopher; ŁOZIńSKI, Tomasz; JAKIEL, Grzegorz. The Role of Tumor Necrosis Factor α in the Biology of Uterine Fibroids and the Related Symptoms. International Journal Of Molecular Sciences, [s.l.], v. 19, n. 12, p. 3869, 4 dez. 2018. MDPI AG. http://dx.doi.org/10.3390/ijms19123869. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321234/. Acesso em: 11 set. 2019.

USLU, Sema; AKARKARASU, Zubeyde Eken; OZBABALIK, Demet; OZKAN, Serhat; ÇOLAK, Omer; DEMIRKAN, Emine Sutken; OZKIRIS, Ayşe; DEMIRUSTU, Canan; ALATAS, Ozkan. Levels of Amyloid Beta-42, Interleukin-6 and Tumor Necrosis Factor-Alpha in Alzheimer’s Disease and Vascular Dementia. Neurochemical Research, [s.l.], v. 37, n. 7, p. 1554-1559, 22 mar. 2012. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11064-012-0750-0. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/22437436. Acesso em: 11 out. 2019.

Alzheimer Disease International. World Alzheimer Report 2015: The Global Impact of Dementia. 2015. Disponível em: https://www.alz.co.uk/research/world-report-2015. Acesso em 15 abr. 2019.

World Health Organization. Mental health: Infographic on dementia. 2017. Disponível em: https://www.who.int/mental_health/neurology/dementia/infographic_dementia/en/. Acesso em: 12 abr. 2019

Alzheimer Disease International. World Alzheimer Report 2019: Attitudes to dementia. Disponível em: https://www.alz.co.uk/research/WorldAlzheimerReport2019.pdf. Acesso em: 12 novembro 2019.

HRUBEŁOVÁ, Kateřina; FOUSKOVÁ, Markéta; HABARTOVÁ, Lucie; FIŁAR, Zdeněk; JIRÁK, Roman; RABOCH, Jiří; SETNIčKA, Vladimír. Search for biomarkers of Alzheimer‘s disease: recent insights, current challenges and future prospects. : Recent insights, current challenges and future prospects. Clinical Biochemistry, [s.l.], v. 72, p. 39-51, out. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.clinbiochem.2019.04.002. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30953619. Acesso em: 05 set. 2019.

DRYER, Stuart E.; ROSHANRAVAN, Hila; KIM, Eun Young. TRPC channels: regulation, dysregulation and contributions to chronic kidney disease. : Regulation, dysregulation and contributions to chronic kidney disease. Biochimica Et Biophysica Acta (BBA) - Molecular Basis Of Disease, [s.l.], v. 1865, n. 6, p. 1041-1066, jun. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.bbadis.2019.04.001. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30953689. Acesso em: 15 abr. 2019.

WANG, Junfeng; LU, Rui; YANG, Jian; LI, Hongyu; HE, Zhuohao; JING, Naihe; WANG, Xiaomin; WANG, Yizheng. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nature Communications, [s.l.], v. 6, n. 1, 8876, 19 nov. 2015. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/ncomms9876. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/26581893. Acesso em: 15 abr. 2019.

LU, Rui; HE, Qian; WANG, Junfeng. TRPC Channels and Alzheimer’s Disease. Advances In Experimental Medicine And Biology, [s.l.], p. 73-83, 2017a. Springer Netherlands. http://dx.doi.org/10.1007/978-94-024-1088-4_7. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/28508314. Acesso em: 02 maio 2020.

LU, R; WANG, J; TAO, R; WANG, J; ZHU, T; GUO, W; SUN, y; LI, H; GAO, y; ZHANG, W. Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer’s disease and mild cognitive impairment. Molecular Psychiatry, [s.l.], v. 23, n. 3, p. 767-776, 11 jul. 2017b. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/mp.2017.136. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/28696436. Acesso em: 10 abr. 2019.

CHEN, Jin-mei; LI, Qing-wei; LIU, Jian-sheng; JIANG, Guo-xin; LIU, Jian-ren; CHEN, Sheng-di; CHENG, Qi. TRPC6 mRNA levels in peripheral leucocytes of patients with Alzheimer's disease and mild cognitive impairment: a case-control study. : A case-control study. Progress In Neuro-psychopharmacology And Biological Psychiatry, [s.l.], v. 92, p. 279-284, jun. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.pnpbp.2019.01.009. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30684527. Acesso em: 1 abr. 2019.

O'BRYANT, Sid E.; WARING, Stephen C.; HOBSON, Valerie; HALL, James R.; MOORE, Carol B.; BOTTIGLIERI, Teodoro; MASSMAN, Paul; DIAZ-ARRASTIA, Ramon. Decreased C-Reactive Protein Levels in Alzheimer Disease. Journal Of Geriatric Psychiatry And Neurology, [s.l.], v. 23, n. 1, p. 49-53, 20 nov. 2009. SAGE Publications. http://dx.doi.org/10.1177/0891988709351832. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204581/. Acesso em: 02 maio 2020.

YARCHOAN, Mark; LOUNEVA, Natalia; XIE, Sharon X.; SWENSON, Frank J.; HU, William; SOARES, Holly; TROJANOWSKI, John Q.; LEE, Virginia M.-y.; KLING, Mitchel A.; SHAW, Leslie M.. Association of plasma C-reactive protein levels with the diagnosis of Alzheimer's disease. Journal Of The Neurological Sciences, [s.l.], v. 333, n. 1-2, p. 9-12, out. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.jns.2013.05.028. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23978419. Acesso em: 11 fev. 2020.

KIM, Yo Sup; LEE, Kang Joon; KIM, Hyun. Serum tumour necrosis factor-α and interleukin-6 levels in Alzheimer's disease and mild cognitive impairment. Psychogeriatrics, [s.l.], v. 17, n. 4, p. 224-230, 28 jan. 2017. Wiley. http://dx.doi.org/10.1111/psyg.12218. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/28130814. Acesso em: 10 fev. 2020.

BERMEJO, Paloma; MARTÍN-ARAGÓN, Sagrario; BENEDÍ, Juana; SUSÍN, Cristina; FELICI, Emanuela; GIL, Pedro; RIBERA, José Manuel; VILLAR, Ángel Mª. Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer's disease. Immunology Letters, [s.l.], v. 117, n. 2, p. 198-202, maio 2008. Elsevier BV. http://dx.doi.org/10.1016/j.imlet.2008.02.002. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/18367253. Acesso em: 13 fev. 2020.

VAN DUIJN, Cornelia M; HOFMAN, Albert; NAGELKERKEN, Lex. Serum levels of interleukin-6 are not elevated in patients with Alzheimer's disease. Neuroscience Letters, [s.l.], v. 108, n. 3, p. 350-354, jan. 1990. Elsevier BV. http://dx.doi.org/10.1016/0304-3940(90)90666-w. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/2304653. Acesso em: 10 fev. 2020.

ANGELIS, Pela; SCHARF, Simon; MANDER, Alastair; VAJDA, Frank; CHRISTOPHIDIS, Nicholas. Serum interleukin-6 and interleukin-6 soluble receptor in Alzheimer's disease. Neuroscience Letters, [s.l.], v. 244, n. 2, p. 106-108, mar. 1998. Elsevier BV. http://dx.doi.org/10.1016/s0304-3940(98)00136-0. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/9572596. Acesso em: 10 fev. 2020.

CHAPUIS, J; HANSMANNEL, F; GISTELINCK, M; A MOUNIER,; VAN CAUWENBERGHE, C; KOLEN, K V; GELLER, F; SOTTEJEAU, y; HAROLD, D. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Molecular Psychiatry, [s.l.], v. 18, n. 11, p. 1225-1234, 12 fev. 2013. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/mp.2013.1. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23399914. Acesso em: 15 set. 2019.

SUN, Lei; TAN, Meng-shan; HU, Nan; YU, Jin-tai; TAN, Lan. Exploring the Value of Plasma BIN1 as a Potential Biomarker for Alzheimer's Disease. Journal Of Alzheimer's Disease, [s.l.], v. 37, n. 2, p. 291-295, 9 set. 2013. IOS Press. http://dx.doi.org/10.3233/jad-130392. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23803295. Acesso em: 21 set. 2019.

SHI, Jian-quan; SHEN, Wei; CHEN, Jun; WANG, Bian-rong; ZHONG, Ling-ling; ZHU, Yin-wei; ZHU, Hai-qing; ZHANG, Qiao-quan; ZHANG, Ying-dong; XU, Jun. Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Research, [s.l.], v. 1368, p. 239-247, jan. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.brainres.2010.10.053. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/20971085. Acesso em: 10 out. 2019.

ÁLVAREZ, Antón; CACABELOS, Ramón; SANPEDRO, Carolina; GARCÍA-FANTINI, Manuel; ALEIXANDRE, Manuel. Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiology Of Aging, [s.l.], v. 28, n. 4, p. 533-536, abr. 2007. Elsevier BV. http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.012. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/16569464. Acesso em: 10 set. 2019.

NG, Ada; TAM, Wilson W.; ZHANG, Melvyn W.; HO, Cyrus S.; HUSAIN, Syeda F.; MCINTYRE, Roger S.; HO, Roger C.. IL-1β, IL-6, TNF- α and CRP in Elderly Patients with Depression or Alzheimer’s disease: systematic review and meta-analysis. : Systematic Review and Meta-Analysis. Scientific Reports, [s.l.], v. 8, n. 1, 12050, 13 ago. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41598-018-30487-6. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30104698. Acesso em: 15 out. 2019.