Use of monoclonal antibodies in therapy against COVID-19

Main Article Content

Diogo Campos Santana
Mayara de Castro Maciel
Lilian Hikaru Nakao
Deny Anderson dos Santos

Abstract

SARS-Cov-2 is an enveloped virus of single-stranded positive RNA from the genus Betacoronavirus. With the emergence of covid-19 in late 2019 and its rapid advance starting a pandemic, worldwide researchers have engaged in the development of prophylactic and therapeutic methods to combat the disease. By August 2022, there were already over 500 million positive cases and over 6,000,000 deaths reported worldwide. Vaccines, as the main method of containing moderate to severe symptoms of the disease, have played a key role in controlling the pandemic, reducing the number of hospitalizations and deaths. Despite numerous studies developed in the last two years and also the use of drugs proven ineffective (such as hydroxychloroquine and ivermectin), there is no effective and exact therapy against the virus, making the development of biotechnological tools for a specific and efficient treatment long awaited. Among the main therapeutic molecules are monoclonal antibodies (MAbs), which are biopharmaceutical products from hybridomas whose function is to perform a specific and weighted effect on a given target. Currently there are studies for MAbs that target spike protein, angiotensin-converting enzyme 2 receptor (ACE2), IL-6, CD6 IgG1, GM-CSF, IL-1, CD147, TNF-alpha and also for prophylactic use. Although promising, it is a therapy that has some obstacles because it is laborious and expensive.

Article Details

How to Cite
Santana, D. C., Maciel, M. de C., Nakao, L. H., & dos Santos , D. A. (2022). Use of monoclonal antibodies in therapy against COVID-19. Brazilian Journal of Biomedical Sciences, 3(1), E0672022, 1–8. https://doi.org/10.46675/rbcbm.v3i1.67
Section
Review article
Author Biography

Deny Anderson dos Santos , Universidade Anhembi Morumbi

Doutorado em Biotecnologia pela Universidade de São Paulo

References

Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 15 de fevereiro de 2020;395(10223):470–3.

Cavalcante JR, Cardoso-dos-Santos AC, Bremm JM, Lobo A de P, Macário EM, Oliveira WK de, et al. COVID-19 no Brasil: evolução da epidemia até a semana epidemiológica 20 de 2020. Epidemiol Serv Saúde [Internet]. 10 de agosto de 2020 [citado 30 de agosto de 2022];29. Disponível em: http://www.scielo.br/j/ress/a/zNVktw4hcW4kpQPM5RrsqXz/?lang=pt

Fundação Oswaldo Cruz, Gräf T. Diversidade dos coronavírus, origem e evolução do SARS-CoV-2. Em: Fiocruz/Bahia, Barral-Netto M, Barreto ML, Aragão É, organizadores. Construção de conhecimento no curso da pandemia de COVID-19: aspectos biomédicos, clínico-assistenciais, epidemiológicos e sociais [Internet]. 01 ed EDUFBA; 2020 [citado 1º de setembro de 2022]. Disponível em: https://repositorio.ufba.br/ri/bitstream/ri/32370/7/vol1_cap1_diversidade%20dos%20coronav%c3%adrus%20origem%20e%c2%a0evolu%c3%a7%c3%a3o%20do%20SARS-CoV-2.pdf

Kirtipal N, Bharadwaj S, Kang G S. From SARS to SARS-Cov-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Novembro de 2020

From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses - PMC (nih.gov)

World Health Organization. WHO COVID-19 dashboard [Internet]. World Health Organization. 2022. Disponível em: https://covid19.who.int/

Parasher A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J. maio de 2021;97(1147):312–20.

Jahanshahlu L, Rezaei N. Monoclonal antibody as a potential anti-COVID-19. Biomedicine & Pharmacotherapy [Internet]. 1º de setembro de 2020 [citado 30 de agosto de 2022];129:110337. Disponível em: https://www.sciencedirect.com/science/article/pii/S0753332220305308

O. de Almeida J, T. de Oliveira VR, Lucas dos S. Avelar J, Simões Moita B, Moreira Lima L. COVID-19: Physiopathology and Targets for Therapeutic Intervention. Rev Virtual Quim [Internet]. 2020 [citado 1º de setembro de 2022];12(6):1464–97. Disponível em: http://rvq.sbq.org.br/audiencia_pdf.asp?aid2=1268&nomeArquivo=v12n6a10.pdf

Shanmugaraj B, Siriwattananon K, Wangkanont K, Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac J Allergy Immunol. março de 2020;38(1):10–8.

Silva GGD da, Felício IM, Oliveira LN de, Santos AKF de S, Macêdo CL. Terapia da Covid-19 com anticorpos monoclonais. Research, Society and Development [Internet]. 6 de julho de 2022 [citado 30 de agosto de 2022];11(9):e20011931668–e20011931668. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31668

Mendes KDS, Silveira RC de CP, Galvão CM. Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto contexto - enferm [Internet]. dezembro de 2008 [citado 7 de setembro de 2022];17:758–64. Disponível em: http://www.scielo.br/j/tce/a/XzFkq6tjWs4wHNqNjKJLkXQ/abstract/?lang=pt

Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. SARS‐CoV‐2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol. 2021;61:180–202. 10.1002/jbm.202000537

Luo L, Liu D, Liao X, Wu X, Jing Q, Zheng J, et al. Contact Settings and Risk for Transmission in 3410 Close Contacts of Patients With COVID-19 in Guangzhou, China. Ann Intern Med [Internet]. 13 de agosto de 2020 [citado 1º de setembro de 2022];M20-2671. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506769/

Belasco AGS, Fonseca CD da. Coronavírus 2020. Rev Bras Enferm [Internet]. 27 de março de 2020 [citado 30 de agosto de 2022];73. Disponível em: http://www.scielo.br/j/reben/a/59cMj854MHCwtCG7X8Pncnr/?lang=pt

Lima CMA de O. Information about the new coronavirus disease (COVID-19). Radiol Bras [Internet]. 17 de abril de 2020 [citado 30 de agosto de 2022];53:V–VI. Disponível em: http://www.scielo.br/j/rb/a/MsJJz6qXfjjpkXg6qVj4Hfj/?lang=en

Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, et al. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resistance Updates [Internet]. 1o de dezembro de 2021 [citado 30 de agosto de 2022];59:100794. Disponível em: https://www.sciencedirect.com/science/article/pii/S1368764621000546

Silva S, Nascimento J, Mendes R, et al. Two Years into the COVID-19 Pandemic: Lessons Learned. 8 de agosto de 2022. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9380879/

Ribatti D. From the discovery of monoclonal antibodies to their therapeutic application: An historical reappraisal. Immunology Letters [Internet]. 1o de setembro de 2014 [citado 28 de setembro de 2022];161(1):96–9. Disponível em: https://www.sciencedirect.com/science/article/pii/S0165247814001023

YAMADA, T. Therapeutic monoclonal antibodies. The Keio Journal of Medicine, v. 60, n. 2, p. 37–46, 2011.

Kirillova A, Lado A, Blatt N. Application of Monoclonal Antibody Drugs in Treatment of COVID-19: a Review. Bionanoscience [Internet]. 15 de junho de 2022 [citado 28 de setembro de 2022];1–19. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198616/

Owji H, Negahdaripour M, Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int Immunopharmacol. novembro de 2020;88:106924.

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol [Internet]. 2020 [citado 29 de setembro de 2022];20(6):363–74. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187672/

Patel S, Saxena B, Mehta P. Recent updates in the clinical trials of therapeutic monoclonal antibodies targeting cytokine storm for the management of COVID-19. Heliyon [Internet]. 1o de fevereiro de 2021 [citado 28 de setembro de 2022];7(2):e06158. Disponível em: https://www.sciencedirect.com/science/article/pii/S2405844021002632

Dougan M, Nirula A, Azizad M, Mocherla B, Gottlieb RL, Chen P, et al. Bamlanivimab plus Etesevimab in Mild or Moderate Covid-19. N Engl J Med [Internet]. 14 de julho de 2021 [citado 29 de setembro de 2022];NEJMoa2102685. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8314785/

Bamlanivimab Intravenous: Uses, Side Effects, Interactions, Pictures, Warnings & Dosing - WebMD [Internet]. www.webmd.com. [citado em 3 de outubro de 2022]. Disponível em: https://www.webmd.com/drugs/2/drug-180355/bamlanivimab-intravenous/details#:~:text=An%20infusion%20reaction%20may%20occur

(26)[42] Cohen MS, Nirula A, Mulligan MJ, Novak RM, Marovich M, Yen C, et al. Effect of Bamlanivimab vs Placebo on Incidence of COVID-19 Among Residents and Staff of Skilled Nursing and Assisted Living Facilities. JAMA [Internet]. 6 de julho de 2021 [citado 10 de outubro de 2022];326(1):1–10. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176388/

Baral PK, Yin J, James MNG. Treatment and prevention strategies for the COVID 19 pandemic: A review of immunotherapeutic approaches for neutralizing SARS-CoV-2. Int J Biol Macromol [Internet]. 1o de setembro de 2021 [citado 29 de setembro de 2022];186:490–500. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256663/

Annex I Conditions Of Use, Conditions For Distribution And Patients Target And Conditions For Safety Monitoring Addressed To Member States For Unauthorized Product Regkirona (regdanvimab)[Internet]. www.ema.europa.eu [citado em 3 de outubro de 2022]. Disponível em: https://www.ema.europa.eu/en/documents/referral/celltrion-use-regdanvimab-treatment-covid-19-article-53-procedure-conditions-use-conditions_en.pdf

Ministério da Economia Instituto Nacional da Propriedade Industrial [Internet]. www.gov.br [citado em 3 de Outubro de 2022] Disponível em: https://www.gov.br/inpi/pt-br/servicos/patentes/tecnologias-para-covid-19/Arquivos%20Textos/Estudo6MAbsrevisado20072020.pdf

Deb P, Molla MdMA, Saif-Ur-Rahman KM. An update to monoclonal antibody as therapeutic option against COVID-19. Biosaf Health [Internet]. abril de 2021 [citado 3 de outubro de 2022];3(2):87–91. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872849/

Tocilizumab Para Pacientes com COVID-19. Revisão sistemática. [Internet]. Oxford Brazil EBM Alliance. [citado 3 de outubro de 2022]. Disponível em: https://oxfordbrazilebm.com/index.php/2020/06/30/tocilizumabe-para-pacientes-com-covid-19/

Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A [Internet]. 19 de maio de 2020 [citado 3 de outubro de 2022];117(20):10970–5. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245089/

Majidpoor J, Mortezaee K. Interleukin-6 in SARS-CoV-2 induced disease: Interactions and therapeutic applications. Biomed Pharmacother [Internet]. janeiro de 2022 [citado 3 de outubro de 2022];145:112419. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585600/

Subramanian Loganathan, Sandeep N. Athalye & Shashank R. Joshi (2020) Itolizumab, an anti-CD6 monoclonal antibody, as a potential treatment for COVID-19 complications, Expert Opinion on Biological Therapy, 20:9, 1025-1031, DOI: 10.1080/14712598.2020.1798399. Disponível em: https://doi.org/10.1080/14712598.2020.1798399

Biocon Limited. A Multi-Centre, Open Label, Two Arm Randomized, Phase 2 Trial to Study the Efficacy and Safety of Itolizumab in COVID-19 Complications [Internet]. clinicaltrials.gov. 2021. [citado 6 de outubro de 2022] Disponível em: https://clinicaltrials.gov/ct2/show/NCT04475588

Atal S, Fatima Z, Balakrishnan S. Approval of Itolizumab for COVID-19: A Premature Decision or Need of The Hour? BioDrugs [Internet]. 1o de dezembro de 2020 [citado 6 de outubro de 2022];34(6):705–11. Disponível em: https://doi.org/10.1007/s40259-020-00448-5

Fisher BA, Veenith T, Slade D, Gaskell C, Rowland M, Whitehouse T, et al. Namilumab or infliximab compared with standard of care in hospitalised patients with COVID-19 (CATALYST): a randomised, multicentre, multi-arm, multistage, open-label, adaptive, phase 2, proof-of-concept trial. Lancet Respir Med [Internet]. março de 2022 [citado 6 de outubro de 2022];10(3):255–66. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676420/

Taylor PC, Saurigny D, Vencovsky J, Takeuchi T, Nakamura T, Matsievskaia G, et al. Efficacy and safety of namilumab, a human monoclonal antibody against granulocyte-macrophage colony-stimulating factor (GM-CSF) ligand in patients with rheumatoid arthritis (RA) with either an inadequate response to background methotrexate therapy or an inadequate response or intolerance to an anti-TNF (tumour necrosis factor) biologic therapy: a randomized, controlled trial. Arthritis Research & Therapy [Internet]. 18 de abril de 2019 [citado 6 de outubro de 2022];21(1):101. Disponível em: https://doi.org/10.1186/s13075-019-1879-x

Masoomikarimi M, Garmabi B, Alizadeh J, et al. Advances in immunotherapy for COVID-19: A comprehensive review. 2021 Apr; 93: 107409.

Published online 2021 Jan 22. doi: 10.1016/j.intimp.2021.107409

Anexo I Resumo Das Características Do Medicamento [Internet]. [citado 10 de outubro de 2022]. Disponível em: https://www.ema.europa.eu/en/documents/product-information/kineret-epar-product-information_pt.pdf

Bian H, Zheng Z, Wei D, et al. Safety and efficacy of meplazumab in healthy volunteers and COVID-19 patients: a randomized phase 1 and an exploratory phase 2 trial. 17 de maio de 2021. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127508/

Salesi M, Shojaie B, Farajzadegan Z, Salesi N, Mohammadi E. TNF-α Blockers Showed Prophylactic Effects in Preventing COVID-19 in Patients with Rheumatoid Arthritis and Seronegative Spondyloarthropathies: A Case–Control Study. Rheumatol Ther [Internet]. 1o de setembro de 2021 [citado 10 de outubro de 2022];8(3):1355–70. Disponível em: https://doi.org/10.1007/s40744-021-00342-8